4Z1 - Artificial Intelligence/인공지능 개론
딥러닝의 기본 학습 - How to minimize cost-실습-2
Richrad Chung
2020. 8. 27. 12:43
import tensorflow as tf
X = [1, 2, 3]
Y = [1, 2, 3]
# Set wrong model weights
W = tf.Variable(5.)
# Linear model
hypothesis = X * W
# Manual gradient
gradient = tf.reduce_mean((W * X - Y) * X) * 2
# cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
# Get gradients
gvs = optimizer.compute_gradients(cost, [W])
# Apply gradients
apply_gradients = optimizer.apply_gradients(gvs)
# Launch the graph in a session.
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for step in range(100):
print(step, sess.run([gradient, W, gvs]))
sess.run(apply_gradients)